On the use of spacetime transformations in path integration

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 19 L891
(http://iopscience.iop.org/0305-4470/19/15/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:21

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the use of spacetime transformations in path integration

Antônio B Nassar† \ddagger, J M F Bassalo \ddagger, H S Antunes Neto \ddagger and Paulo de T Santos Alencar \ddagger
\dagger Department of Physics, University of California at Los Angeles, Los Angeles, CA 90024, USA
\ddagger Departamento de Física, Universidade Federal do Pará, 66000 Belém-Pará, Brazil

Received 19 June 1986

Abstract

We demonstrate that the use of a spacetime transformation can greatly simplify the evaluation of the propagator for the problem of a particle with time-dependent mass, subject to a time-varying forced harmonic oscillator potential. We show that such a propagator can be easily obtained from the free propagator in the new spacetime coordinate system.

Despite the aesthetic attractiveness of the Feynman path integral formulation of the quantum theory, the evaluation of the propagator for certain time-dependent systems, if done in a straightforward manner, can become an overwhelmingly laborious task (Cheng 1984, 1986). So in order to counter these apparent difficulties spacetime transformation techniques have proved useful in several instances (Nassar et al 1986, Junker and Inomata 1985, Dhara and Lawande 1984a, b, Pak and Sokmen 1984). In particular, we have recently demonstrated the usefulness of a certain type of spacetime transformation in deriving the propagator for an explicitly time-dependent quadratic system (Nassar et al 1986).

In this letter, we take a further step in our earlier work toward an exact evaluation of the propagator for the problem of a particle with time-dependent mass, subject to a time-varying forced harmonic oscillator potential. Overall, we show that such a propagator can be easily obtained from the free propagator in the new spacetime coordinate system.

Let us start out by writing the Lagrangian of our system as

$$
\begin{equation*}
L=\frac{1}{2} m(t) \dot{x}^{2}-\frac{1}{2} m(t) \omega^{2}(t) x^{2}+x f(t) . \tag{1}
\end{equation*}
$$

As thoroughly discussed in our earlier work (Nassar et al 1986), the propagator for quadratic systems like (1) can be written as

$$
\begin{equation*}
K\left(x, t ; x_{0}, t_{0}\right)=\phi\left(t, t_{0}\right) \exp \left[(\mathrm{i} / \hbar) S\left(x, t ; x_{0}, t_{0}\right)\right] \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
S\left(x, t ; x_{0}, t_{0}\right) & =S\left[\chi\left(t^{*}\right)\right] \\
& =\int_{x_{0}, t_{0}}^{x, t} \mathrm{~d} t^{*} L\left[\chi\left(t^{*}\right), \dot{\chi}\left(t^{*}\right), t^{*}\right] \\
& =\int_{x_{0}, t_{0}}^{x, t} \mathrm{~d} t^{*}\left[\frac{1}{2} m\left(t^{*}\right) \dot{\chi}^{2}\left(t^{*}\right)-\frac{1}{2} m\left(t^{*}\right) \omega^{2}\left(t^{*}\right) \chi^{2}\left(t^{*}\right)+\chi\left(t^{*}\right) f\left(t^{*}\right)\right] \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
\phi\left(t, t_{0}\right)=\phi_{0}\left(t_{0}\right) \exp \left(-\frac{1}{2} \int_{t_{0}}^{t} \mathrm{~d} t^{*} \frac{1}{m\left(t^{*}\right)} \frac{\partial^{2} S}{\partial x^{2}}\right) \tag{4}
\end{equation*}
$$

The constant $\phi_{0}\left(t_{0}\right)$ is introduced in (4) in order to match the condition

$$
\begin{equation*}
\lim _{t \rightarrow I_{0}} K\left(x, t ; x_{0}, t_{0}\right)=\delta\left(x-x_{0}\right) \tag{5}
\end{equation*}
$$

By performing variation on (3), we obtain

$$
\begin{equation*}
\ddot{\chi}+(\dot{m} / m) \dot{\chi}+\omega^{2} \chi=f / m \tag{6}
\end{equation*}
$$

Now we make use of the spacetime transformation $\chi(t) \leftrightarrow r(\tau)$ (Leach 1978, Burgan et al 1979, Ray 1982):

$$
\begin{align*}
& r(\tau)=\chi(t) / C(t)+A(t) \tag{7a}\\
& \tau=\int^{t} \mu(\lambda) \mathrm{d} \lambda . \tag{7b}
\end{align*}
$$

(The following notation is employed: $z_{z}\left(t^{*}=t\right)=z, z_{z}\left(t^{*}=t_{0}\right)=z_{0}, z^{\prime}(t)=\mathrm{d} z\left(t^{*}\right) /\left.\mathrm{d} t\right|_{t^{*}=t}$ and so on.)

After substitution of (7) into (6), we end up with

$$
\begin{equation*}
r^{\prime \prime}=0 \tag{8}
\end{equation*}
$$

provided that

$$
\begin{equation*}
2 \dot{C} \mu+C \dot{\mu}+C \mu \dot{m} / m=0 \tag{9a}
\end{equation*}
$$

which leads to

$$
\begin{align*}
& \mu=1 / m C^{2} \tag{9b}\\
& \ddot{C}+(\dot{m} / m) \dot{C}+\omega^{2} C=0 \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
\ddot{A}+\left(\frac{2 \dot{C}}{C}+\frac{\dot{m}}{m}\right) \dot{A}+\frac{f}{m C}=0 . \tag{11}
\end{equation*}
$$

The corresponding action and Lagrangian for (8) is

$$
\begin{equation*}
\bar{S}\left(\imath, \tau ; \imath_{0}, \tau_{0}\right)=\bar{S}\left[r\left(\tau^{*}\right)\right]=\int_{z_{0}, \tau_{0}}^{1, \tau} \mathrm{~d} \tau^{*} \bar{L}\left[r^{\prime}\left(\tau^{*}\right)\right] \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{L}=\frac{1}{2} r^{\prime 2} \tag{13}
\end{equation*}
$$

Because the respective variations $\delta S=0$ and $\delta \bar{S}=0$ are equivalent (i.e. (6) and (8) are equivalent), their corresponding actions may differ by just

$$
\begin{equation*}
S=\bar{S}+\left[g(x, t)-g\left(x_{0}, t_{0}\right)\right] \tag{14}
\end{equation*}
$$

where we must have $\delta g=0$; i.e. g is a function of the initial and end points only. Equation (14) can be rewritten as

$$
\begin{equation*}
\int \mathrm{d} t^{*} L=\int \frac{\mathrm{d} t^{*}}{m C^{2}} \bar{L}+\int \mathrm{d} t^{*} \frac{\mathrm{~d} g}{\mathrm{~d} t^{*}} \tag{15}
\end{equation*}
$$

implying that

$$
\begin{equation*}
L\left(\chi\left(t^{*}\right), \dot{\chi}\left(t^{*}\right), t\right)=\left.\frac{\bar{L}\left(r^{\prime}\left(t^{*}\right)\right)}{m C^{2}}\right|_{r^{\prime}\left(t^{*}\right)=\left(\mathrm{d} / \mathrm{d} t^{*}\right)\left[x\left(t^{*}\right) / C\left(t^{*}\right)+A\left(t^{*}\right)\right]}+\frac{\mathrm{d} g}{\mathrm{~d} t^{*}} . \tag{16}
\end{equation*}
$$

By substituting (1), (13), (7a) and (7b) into (16), we find that

$$
\begin{equation*}
\frac{\mathrm{d} g}{\mathrm{~d} t^{*}}=\frac{\mathrm{d}}{\mathrm{~d} t^{*}}\left[\left(\frac{m \dot{C}}{2 C}\right) \chi^{2}-(m C \dot{A}) \chi-\int^{t^{*}} F(\lambda) \mathrm{d} \lambda\right] \tag{17}
\end{equation*}
$$

where $F \equiv m \dot{A}^{2} C^{2} / 2$, such that we have, from (12)-(14) and (17),
$S=\frac{1}{2} \frac{\left(r-z_{0}\right)^{2}}{\left(\tau-\tau_{0}\right)}+\left[\left(\frac{m \dot{C} x^{2}}{2 C}-\frac{m_{0} \dot{C}_{0} x_{0}^{2}}{2 C_{0}}\right)-\left(m C \dot{A} x-m_{0} C_{0} \dot{A}_{0} x_{0}\right)-\int_{t_{0}}^{t} F(\lambda) \mathrm{d} \lambda\right]$.
In turn, by using (4), (7), (9b) and (18), we readily find

$$
\begin{equation*}
K=\frac{\phi_{0}}{\sqrt{C}\left(\tau-\tau_{0}\right)} \mathrm{e}^{\mathrm{i} S / \hbar} . \tag{19}
\end{equation*}
$$

The constant factor $\phi_{0}\left(t_{0}\right)$ can be found by imposing condition (5). It yields

$$
\begin{equation*}
\phi_{0}=\left(\frac{1}{2 \pi \mathrm{i} \hbar C_{0}}\right)^{1 / 2} \tag{20}
\end{equation*}
$$

such that the full propagator is

$$
\begin{align*}
K\left(x, t ; x_{0}, t_{0}\right) & =\frac{1}{\left(C C_{0}\right)^{1 / 2}} \exp \left\{\frac { \mathrm { i } } { \hbar } \left[\left(\frac{m \dot{C} x^{2}}{2 C}-\frac{m_{0} \dot{C}_{0} x_{0}^{2}}{2 C_{0}}\right)\right.\right. \\
& \left.\left.-\left(m C \dot{A} x-m_{0} C_{0} \dot{A}_{0} x_{0}\right)-\int_{t_{0}}^{t} F(\lambda) \mathrm{d} \lambda\right]\right\} K_{\mathrm{free}}\left(\imath, \tau ; \tau_{0}, \tau_{0}\right) \tag{21a}
\end{align*}
$$

where

$$
\begin{equation*}
K_{\text {free }}\left(\imath, \tau ; \imath_{0}, \tau_{0}\right)=\left(\frac{1}{2 \pi \mathrm{i} \hbar\left(\tau-\tau_{0}\right)}\right)^{1 / 2} \exp \left(\frac{\mathrm{i}}{2 \hbar} \frac{\left(\imath-\imath_{0}\right)^{2}}{\left(\tau-\tau_{0}\right)}\right) . \tag{21b}
\end{equation*}
$$

References

Burgan J R, Gutierrez J, Munier A, Fijalkow E and Feix M R 1979 Phys. Lett. 74A 11
Cheng B K 1984 J. Math. Phys. 25217
—— 1986 J. Math. Phys. 271804
Dhara A K and Lawande S V 1984a J. Phys. A: Math. Gen. 172423

- 1984b Phys. Rev. A 30560

Junker G and Inomata A 1985 Phys. Lett. 110A 195
Leach P G L 1978 J. Math. Phys. 19446
Nassar A B, Bassalo J M F and Alencar P T S 1986 Phys. Lett. 113A 365
Pak N K and Sokmen I 1984 Phys. Rev. A 301629
Ray J R 1982 Phys. Rev. A 26729

